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Abstract
In this paper, we have studied the single- and two-channel Kondo lattice model consisting of
localized spins interacting anti-ferromagnetically with itinerant electrons. We have employed
the dynamical mean field theory and have used the exact diagonalization method in our
impurity solver. This method allowed us to access low temperatures and large values of
exchange couplings. Our results for the single-channel case confirm and extend the recent
investigations. In the two-channel case, at absolute zero temperature for half-filling and for the
exchange couplings J/t > 0.8, we have found a spontaneous symmetry breaking quantum
phase transition, with one band showing a metallic behavior and the other showing an insulating
behavior. Finally, our calculations for the two-channel case show the existence of an
anti-ferromagnetic phase for all coupling strengths of physical interest.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Kondo lattice model (KLM) [1], in its single- and
two-channel forms, is one of the fundamental microscopic
models for the description of heavy fermion materials [2–5].
This model consists of itinerant conduction electrons coupled
to localized spins sitting on the crystal lattice sites. The
coupling is represented as an on-site exchange interaction
between this spin and the conduction electron spin density.
This rather simple model gives rise to complex many-
body physics, whose detailed understanding requires further
investigation. The nature of the ground state of the single-
channel Kondo lattice model (SC-KLM) results from the
interplay between magnetic Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction [6] among the localized spins and the
Kondo screening effect of these spins. The polarization cloud
of conduction electrons produced by a local moment may be
felt by another local moment. This provides the mechanism
for the RKKY interaction. On the other hand, the same
polarization cloud can also form a singlet bound state with
the local moment when the coupling strength is strong [7].
The RKKY interaction leads to a long-range ordered anti-
ferromagnetic (AF) phase in two and three dimensions and the
Kondo effect screening leads to short-range spin correlations
due to the formation of coherent Kondo spin singlets. There
is a quantum phase transition between the two limiting
phases upon changing the parameters of the model [8]. It
is generally believed that the half-filled SC-KLM exhibits a

Kondo insulator phase for large coupling strength, whereas
for smaller coupling strength a phase transition to an AF state
occurs [9].

The two-channel Kondo lattice model (TC-KLM) occurs
for two identical species of noninteracting electrons coupled
anti-ferromagnetically to localized electron spins. Less work
is done on the TC-KLM. The materials which may display the
TC-KLM are rare-earth or actinide inter-metallic compounds
such as CeCu2Si2 and UBe13. In these compounds, the
f orbitals of Ce and U elements remain strongly localized,
essentially retaining their atomic character. Thus, the sites
containing Ce or U atoms often possess a magnetic moment
obeying the first Hund’s rule of maximization of the total
f-electron spins. These localized moments interact with
light conduction electron states contributed by surrounding
ligands [10].

Our calculations show that in the case of a paramagnetic
TC-KLM a spontaneous symmetry breaking quantum phase
transition (SSB-QPT) occurs at exchange couplings of J/t >

0.8. This is a transition from the non-Fermi-liquid phase to
the normal Fermi liquid phase (see figures 2–4 for further
details). The fact that the TC-KLM, in contrast to the SC-
KLM, shows non-Fermi-liquid behavior has been pointed out
by other investigators [11]. In general we mention that for
weak couplings, one has a free spin one-half object scattering
electrons in both channels resulting in the same logarithmically
growing scattering as temperature is lowered. However, as
the exchange coupling constant grows, the impurity spin, on
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the one hand, tends to form a singlet, and on the other hand
the symmetry of the problem forbids it to favor either one of
the two channels to form this singlet. This leaves us with the
possibility of formation of a linear superposition of a singlet
with each channel along with an unbound spin of the spectator
channel carrying a twofold spin degeneracy. This process
continues till the system finds it energetically more favorable to
undergo an SSB-QPT. In fact, our calculations of the system’s
ground state, in the regime of 0.8 < J/t � 6.8, for the
symmetry breaking and symmetry preserving cases tell us that
the true ground state energy must be the SSB case.

In the investigation of the AF phase we note that in
addition to the RKKY interaction and the Kondo screening
effect there is a novel type of superexchange present in the TC-
KLM that leads to an AF phase at half-filling. Our numerical as
well as analytical results for the TC-KLM show the existence
of an AF phase for all physical coupling strengths at half-
filling. In order to clarify this notion we have solved, in the
limit of large J/t values, a simple example of a TC-KLM with
four conduction electrons and two sites, where each site has
two identical orbitals (see the appendix for further details).

Jarrell et al [11, 12], have examined the paramagnetic
(PM) phase of this model using the quantum Monte Carlo
(QMC) approach and have found non-Fermi-liquid behavior
at low temperatures. The existence of the sign problem in their
QMC simulation limited their access to very low temperatures
and large coupling strengths. As a result, we have employed
the exact diagonalization (ED) technique for the impurity
solver used in the dynamical mean field theory (DMFT). They
also have found evidence for a novel superconducting ground
state. But, as they explain, this phase becomes important away
from half-filling, and therefore we did not consider it here.

The aim of this work is to further elucidate the SC-
KLM and TC-KLM at half-filling. We have also studied
the TC-KLM at quarter-filling. The quarter-filling case for
the two-channel model is analogous to the half-filled case
for the single-channel model in that there is one conduction
electron per impurity spin leading to complete screening at
strong couplings. Our results for the single-channel case, in
agreement with other investigations, showed the presence of
the Kondo insulator.

The organization of the paper is the following: in section 2
the KLM is introduced. In sections 3.1 and 3.2, results on
the PM and AF phases are presented, respectively. The main
portion of section 3.1 is devoted to the calculation of self-
energies, density of states and double occupancies, obtained
at several coupling strengths. Section 3.2 deals with magnetic
ordering and section 4 contains our concluding remarks.

2. Model

The KLM Hamiltonian is defined by

H = −t
∑

〈i j〉mσ

(c†
imσ c jmσ + H.c.) + J

2

∑

imαβ

Si · (c†
imασ αβcimβ).

(1)
Here, m is the channel index, assuming two values (m = 1, 2)

for the two-channel systems. t is the conduction electron

hopping amplitude, taken to be the same in both bands,
c†

imσ (ci,mσ ) creates (annihilates) an electron on lattice site i ,
with channel index m and spin projection σ = (↑,↓), and σ

is a pseudo-vector represented by Pauli spin matrices. Si is the
spin operator of the localized f electrons.

For solving this Hamiltonian we employ the dynamical
mean field theory [13], which is a powerful tool to investigate
the nonperturbative regimes of strongly correlated systems. In
DMFT, the lattice model is mapped onto an effective impurity
problem subject to a self-consistency condition, which contains
the needed information about the original lattice. The method
becomes exact in the limit of infinite coordination number. In
this work, we consider the infinite coordination Bethe lattice,
with semicircular density of states (DOS) of half-bandwidth D,

N(ω) = 2

π D2

√
D2 − ω2. (2)

In order to map KLM onto an appropriate impurity model, we
closely follow the treatment given in [17], i.e., we introduce
fermion operators fiσ to represent the spin operator of the
localized f electron (Si = 1

2 ) as Si = 1
2

∑
α,β f †

iασ αβ fiβ ,

where the f operators satisfy the constraint f †
i↑ fi↑ + f †

i↓ fi↓ = 1
for all i . Our model Hamiltonian, equation (1), maps onto a
single-impurity Kondo model,

H =
∑

kmσ

Ekm a†
kmσ akmσ +

∑

kmσ

Vkm(c†
0mσ akmσ + H.c.)

+ J

2

∑

mαβ

S · (c†
0mασ αβc0mβ), (3)

where interactions are defined only on impurity site 0. For
the Bethe lattice of half-bandwidth D the self-consistency
enforcing the DMFT solution is given by

D2

4
G(iωn) =

∑

k

V 2
k

iωn − Ek
. (4)

G(iωn) is the local Green’s function of the system. The
parameters Vk and Ek are the hybridization and level energies
appearing in the Anderson impurity model.

In the treatment of the effective impurity problem, the
numerical method often employed is the quantum Monte
Carlo (QMC) simulation based on the Hirsch–Fye (H–F)
algorithm which encounters the sign problem, particularly at
low temperatures [14]. Recently, Werner and Millis [15]
have developed the stochastic quantum Monte Carlo (SQMC)
simulation, which is based on the stochastic evaluation of
diagrammatic expansion of the partition function. Although
the SQMC is faster than H–F and the sign problem is less
severe, its access to very low temperatures is limited. To avoid
such limitations, we have solved the effective impurity problem
using the ED algorithm [16]3. The ED technique can handle all
3 We solve the effective impurity problem by truncating the sum on bath levels
to a small number of terms ns, so that the Hilbert space is small enough to
compute various physical quantities such as Green’s function at T = 0 using
the Lanczos algorithm. In all our calculations presented here for SC-KLM the
convergence of truncation has been checked, and in the case of TC-KLM we
have used four bath levels per impurity level (ns = 8). To check the accuracy
of this approximation we have repeated the evaluation of our results with five
bath levels per impurity level (ns = 10) and found fairly good agreement with
ns = 8. Also the self-consistent DMFT set of equations was solved in the
Matsubara space where a fictitious temperature T̃ plays the role of an energy
cut-off. Here we select T̃ /t = 1/128.
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Figure 1. Imaginary time correlation function for the local moments
calculated at half-filling for the J -values as indicated and for
βt = 200. The inset shows the conduction-electron-spin–local-spin
correlation functions. Both spin–spin correlation functions have
exponentially decaying dependence on τ .

the interaction and temperature regimes; however, its accuracy
is limited by the number of bath levels considered.

3. Results

In this section we present our results on SC-KLM and
TC-KLM obtained by iteratively solving the self-consistent
equations in DMFT. All calculations are done at T = 0, unless

otherwise specified. Moreover, to obtain the PM solutions we
suppress the magnetic order by averaging over spin up and spin
down in each orbital. In this way, we have obtained both PM
and anti-ferromagnetic DMFT solutions of the KLM.

3.1. Paramagnetic phase

We will now focus on the performance of ED-DMFT, starting
with the SC-KLM in the paramagnetic phase. Our calculations
reproduce the results of Werner and Millis [15] obtained via
SQMC. In addition, the use of ED allowed us to access
lower temperatures and smaller frequencies. The self-energies
calculated for several J -values at zero temperature (not shown
in this paper) show that, as ωn → 0, even for the smallest J ,
the imaginary part of the self-energies diverges. This shows
the presence of a charge gap at the half-filled SC-KLM and
indicates that the system is in the Kondo insulating phase.
This is a quantum disordered phase in which the conduction
electrons are bound to local spins forming spin singlets.

The local-spin–local-spin correlation function 〈Sz(0)Sz(τ )〉
and the local-spin–conduction-electron-spin correlation func-
tions 〈Sz(0)sz(τ )〉 at βt = 200 are shown in figure 1. The
correlations decay rapidly with time, consistent with the for-
mation of a gapped Kondo insulating state. Also the local-
spin–conduction-electron-spin correlation (see the inset) indi-
cates an anti-parallel alignment (〈Sz(0)sz(τ )〉 < 0). The de-
pendence of the particle number per spin, n, on the chemical
potential, μ, for several J -values, also shows the gap in the
excitation spectrum.

We next focus on TC-KLM. To provide an overview
of the transition, it is customary to introduce the parameter
zi = 1/[1 − Im �i (iω0)/ω0] for identifying the phase
transition in the framework of DMFT [19], where �i(iω0)

specifies the bands’ self-energies at the lowest Matsubara
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Figure 2. Imaginary part of the electron self-energy �(iωn) for the half-filled TC-KLM at T = 0.0 and J/t = 0.6, 0.8, 0.9, 1.0, 1.2, 6.8,
i.e. panels (a), (b), (c), (d), (e), (f). The spontaneous symmetry breaking which takes place with increasing J/t is obvious from the graphs. At
large values of the coupling strength the electrons in both bands form bound states with local spins causing the system to become an insulator.
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Figure 3. Density of states for the half-filled TC-KLM at T = 0.0 and J/t = 0.6, 0.8, 0.9, 1.0, 1.2, 6.8, i.e. panels (a), (b), (c), (d), (e), (f). In
each panel, the solid lines are the counterparts of the upper bands in figure 2 and the dashed lines are the counterparts of the lower bands in
figure 2. The existence of a peak at the Fermi level signals the metallic character of the band and its absence signals an insulating character.

frequency. In the case of normal Fermi liquids this expression
is exactly identical to the quasi-particle weight defined by
1/[1 − ∂

∂ω
Re �i (ω)|ω=0]. As mentioned earlier, TC-KLM

at weak coupling shows non-Fermi-liquid behavior, and the
fact that zi is finite does not imply the existence of ordinary
quasi-particles in this region. Nevertheless, looking at zi is
useful since it permits a convenient identification of phase
transitions. Another quantity which we use to discuss and
characterize the physics of our model is the density of states
(DOS), ρm(ω) = − 1

π
Im Gm(ω), where m is the band index.

The main limitation of the ED technique is that the real
frequency spectral properties reflect the bath level truncation
rather than their imaginary frequency counterparts. In practice,
the DOS is formed by a collection of delta functions. As a
result, this limits our frequency resolution and suggests that
the method is better suited for gaining some information about
the main features of the DOS, rather than obtaining its fine
details. As one knows, the metallic phase gradually loses
its character as the inverse effective mass m/m∗ decreases.
Within DMFT, due to the momentum independence of the
self-energy, this is signaled by the shrinkage of the quasi-
particle peak at the Fermi level, whose width is in fact equal
to m/m∗ times the bare bandwidth. Evidently, due to the non-
Fermi-liquid characteristic of our system, we do not expect the
Luttinger theorem for k-independent self-energies to hold. In
particular, in our case, we do not expect to see the heights
of the quasi-particle weights to be fixed at the noninteracting
value.

Figures 2 and 3 show the imaginary part of self-energies
and the DOS for TC-KLM at half-filling. In panel (a) of
figure 2 our results for small exchange coupling strengths
(J/t = 0.6) are shown, where the two bands show the
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 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

J

0

 0.3

D

Figure 4. Double occupancy Dm = 〈nm↑nm↓〉, m = 1, 2 as a
function of J for two bands (t = 1). The spontaneous symmetry
breaking quantum phase transition occurs in the same regime as
predicted by the self-energy considerations.

same behavior and the self-energies do not tend to zero as
frequencies decrease. Panel (a) of figure 3 shows the DOS of
the two bands for the coupling strength of J/t = 0.6. As
shown in the figure, both bands have quasi-particle peaks at
the Fermi level, indicating that both bands exhibit a metallic
character. Therefore, the behavior of self-energy and DOS
implies that the system is in a non-Fermi-liquid phase. This
is also true for all coupling strengths in the J/t � 0.8 regime.
Other panels of figure 2 show that with increasing coupling
strength a spontaneous symmetry breaking quantum phase
transition occurs. As seen in the figure, the self-energies of the
two bands do not assume the same values at a given Matsubara
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Figure 5. Staggered magnetization m = n↑ − n↓ of the Kondo lattice model (half-filling, bipartite lattice). Left panel: staggered
magnetization of single-channel Kondo lattice model as a function of J/t for T/t = 0.0, 0.0125. There is an AF state at small coupling (for
sufficiently low temperatures) and a quantum phase transition to a PM insulator around J/t = 1.0. Right panel: staggered magnetization of
TC-KLM as a function of J/t for T/t = 0.0. There is an AF state for all physical coupling strengths.

frequency. As a result we have obtained two different bands
with different behaviors. To be specific, panels (b) and (c) of
figure 2 show that the z-value for the upper band is closer to
one, whereas the z-value for the lower band is closer to zero.
This means that the upper bands have lighter quasi-particles
and the lower bands have heavier quasi-particles. Panels (b)
and (c) of figure 3 show that the upper bands have peaks at
the Fermi level, implying that they have metallic character,
while the absence of such peaks for the lower band in panel
(c) indicates that it is in an insulating state. Panels (d) and (e)
of figure 2 vividly demonstrate the metallic character of the
upper bands and the insulating character of the lower bands.
Furthermore, this is confirmed by the corresponding panels
in figure 3. Panel (f) of figure 2 demonstrates the insulating
character of both bands. This is because at larger coupling
strengths conduction electrons of both channels form bound
states with local spins and the system becomes an insulator.
This is also confirmed by panel (f) of figure 3, where the gap
at the Fermi level has widened. Another way of seeing the
SSB-QPT is to look at the results for the double occupancies
Dm = 〈nm↑nm↓〉, m = 1, 2, which are plotted in figure 4.
This figure shows that for small couplings the value of the
double occupancy remains the same for the two bands and
assumes values close to the value of double occupancies for
the noninteracting model (i.e. 0.25). For larger couplings,
the double occupancies for one of the bands decreases more
rapidly than the corresponding value for the other band. We
note that the self-energies and the double occupancies show
that the SSB-QPTs show up at the same coupling strength
regime of J/t > 0.8.

We have also calculated the imaginary part of self-
energies for the two-channel case at quarter-filling. Although,
as mentioned in the introduction, the TC-KLM at quarter-
filling appears to be analogous to the SC-KLM at half-filling,
we must note that the physics of the two cases are quite
different. By considering our results at several coupling
strengths, we believe that electrons of different channels
generate independent RKKY interaction between the localized
moments.

3.2. Magnetic ordering

We now study the magnetic ordering phenomena characteristic
of the Kondo lattice. In the SC-KLM we expect a quantum
phase transition to a singlet phase for J larger than a critical
value. In figure 5 we show the staggered magnetization
m = n↑ − n↓ of the SC-KLM as a function of J/t at
T/t = 0.0, 0.0125. On the small J side a strong temperature
dependence is evident, reflecting the strong J dependence of
the Néel temperature at weak couplings. As one can see,
by decreasing the temperature, the onset of magnetization
shifts to lower J -values. At J/t � 1 the staggered
magnetization rapidly drops to zero for either of the two values
of temperature. This is the quantum phase transition to the
singlet Kondo insulator phase. The right-hand panel shows the
staggered magnetization for TC-KLM. This figure shows the
existence of an AF insulator for all physical coupling strengths.
This is in contrast to the SC-KLM, where there exists a phase
transition to the Kondo insulator for larger coupling strengths.
As in the SC-KLM, the dominant mechanism in TC-KLM
for the AF phase in the weak coupling regime is the RKKY
interaction. But, the existence of AF phase at larger couplings
can be explained by first considering the atomic limit (t = 0)

of the model. The ground states of the local Hamiltonian at
half-filling are three-body states comprised of one electron in
each of the two channels coupled anti-ferromagnetically to the
impurity spin. These degenerate ground states turn out to be

|�0
↑〉 = 1√

6
(2|↑⇓↑〉 − |↓⇑↑〉 − |↑⇑↓〉),

|�0
↓〉 = 1√

6
(2|↓⇑↓〉 − |↑⇓↓〉 − |↓⇓↑〉),

(5)

with equal energies of ε0 = −J . In the above Dirac ket
notation, the thick arrows represent the impurity spin, while the
first and the third (thin) arrows describe the conduction electron
spins in the first and second channels, respectively. Note
that ground states cannot simply be a product of two-particle
singlet states, but necessarily contain triplet admixtures, which
is a frustration effect implied by the quantum nature of the

5
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Hamiltonian. The degeneracy of |�0
↑(↓)〉 is the reason why

the TC-KLM remains nontrivial even in the strong coupling
limit. The ground state of TC-KLM at the atomic limit (t = 0)
is tremendously degenerate. At half-filling each site can harbor
either of the above two degenerate ground states. When
a small hopping term t � J is switched on, these states
are mixed. In order to gain energy from the kinetic term,
electrons in the same channel at the neighboring sites tend
to form an anti-parallel alignment. So anti-ferromagnetism
in the TC-KLM is driven by both RKKY interactions and a
novel type of superexchange. The latter arises from hopping
between adjacent spin 1

2 screening clouds, whose overall
spin is determined by the conduction electrons. For further
clarification, we present the solution of a simple toy model
of a two-channel Kondo lattice in the appendix. This model
consists of two impurity sites, each one having two identical
orbitals, with four electrons occupying them. The Pauli
principle forbids hopping unless neighboring spins in the same
channel are anti-parallel. By using second-order perturbation
theory, we find that the ground state of this toy model is
indicative of a commensurate AF phase.

4. Concluding remarks

We have studied the single- and two-channel KLM at quarter-
and half-filling using the ED-DMFT approach. Compared to
other frequently used DMFT impurity solvers such as QMC,
the ED technique has the advantage of accessing very low
temperatures and high coupling strengths. Our results for
the single-channel case showed the presence of a charge gap
at half-filling and indicates that the system is in the Kondo
insulating phase. In the two-channel case, by calculating the
imaginary part of the electron self-energy as a function of
Matsubara frequencies in the PM phase, we find a spontaneous
symmetry breaking quantum phase transition from non-Fermi-
liquid (incoherent metallic) phase to the coherent Fermi liquid
phase. In considering the AF phase for TC-KLM, we have
found that such a phase continues to exist for all coupling
strengths of physical interest.

As mentioned in the introduction, the nature of the ground
state of the KLM results from the interplay between the
magnetic RKKY interaction among the localized spins and the
Kondo screening effect of these spins. In fact, we would expect
to observe a strong competition between the RKKY interaction
and the Kondo screening effect whenever the Néel and Kondo
temperatures are rather close to each other.

Recent experiments in CeIn3 and CePd2Si2 exhibit such
a strong competition as evidenced by their nearly the same
Néel and Kondo temperatures. Moreover, these two heavy-
fermion compounds show, as one expects, an AF long-range
order [18] (see the references therein). In order to investigate
the properties of these systems, one might supplement the
KLM with a Heisenberg Hamiltonian for the localized spins,
i.e., by including the AF exchange, JAF, between core spins.
In future, we plan to use such a modified model employing the
more sophisticated cluster dynamical mean field theory.

Finally, Jarrel et al [12] have found evidence for the
occurrence of a novel type of superconductivity away from

half-filling. We are currently studying this problem and the
results will be published elsewhere.

Appendix

In this appendix, we use perturbation theory to second order
in the hopping matrix element for a two site TC-KLM.
Our calculation shows that conduction electron spins and, of
course, local spins on nearest neighbor sites tend to order anti-
ferromagnetically, resulting from the interplay between the
on-site local-spin–conduction-electron-spin interaction and the
delocalization of conduction electrons. The Hamiltonian of a
TC-KLM having two sites and four electrons at half-filling is
given by

H = H t + H J ,

H t = −t
∑

mσ

(c†
1mσ c2mσ + c†

2mσ c1mσ ),

H J = J

2

∑

mαβ

S1 · (c†
1mασ αβc1mβ)

+ J

2

∑

mαβ

S2 · (c†
2mασ αβc2mβ).

(A.1)

For large values of J/t , we choose H J to be our zeroth-
order Hamiltonian, whose ground state manifold is fourfold
degenerate as specified below:

|1〉 = |�0
↑〉1|�0

↑〉2,

|2〉 = 1√
2
(|�0

↑〉1|�0
↓〉2 + |�0

↓〉1|�0
↑〉2),

|3〉 = |�0
↓〉1|�0

↓〉2,

|4〉 = 1√
2
(|�0

↑〉1|�0
↓〉2 − |�0

↓〉1|�0
↑〉2).

(A.2)

The subscripts one and two specify the impurity sites
and |�0

↑(↓)〉 are defined by equation (5). The first-order
perturbation theory in H t gives no contribution. Using
standard formula for second-order perturbation, the perturbing
matrix elements are

〈a|H (2)|b〉 = −〈a|H t 1 − P0

H J
H t |b〉

= −
∑

n

〈a|H t |n〉 1

〈n|H J |n〉 − E0
〈n|H t |b〉

(A.3)

where states |a〉, |b〉 belong to the above-mentioned fourfold
degenerate ground states and |n〉 specifies the excited states.

After enumerating all the excited states of the system and
calculating the sum in equation (A.3), we find the ground state
to be the state |2〉 given in equation (A.2). It is seen that the two
impurity sites with their conduction electron cloud are coupled
anti-ferromagnetically, and in the limit of J � t the system
has the least energy of ε = −2J − 29

12
t2

J . In this calculation
only the contribution of the first 56 excited states are included.
The contribution of the remaining higher excited states is less
than 10%, and therefore it leaves our conclusion unaltered.
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